

- 1. lim $x\rightarrow 1^{\pm}$ $f(x) = \lim$ $x\rightarrow 1^{\pm}$ $\frac{x}{|x|}$ $\frac{x}{x} \frac{|x|}{(x-1)} = \pm \infty \implies x = 1$ is V.A $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty}$ $\pm x^2$ $x^2\left(1-\frac{1}{x}\right)$ $\frac{1}{x}$ = ± 1 \implies $y = 1$ and $y = -1$ are H.A. 2. lim $x \rightarrow -1^$ $f(x) = \lim$ $x \rightarrow -1^$ x^2-x $\frac{x}{x^3} = -2, \lim_{x \to -1^+}$ $f(x) = \lim$ $x \rightarrow -1^+$ $2 = 2.$ f has a jump discontinuity at $x = -1$. $f(1) = 3$, \lim $x \rightarrow 1^+$ $f(x) = \lim$ $x \rightarrow 1^+$ $(x+1) = 2$, \lim $x\rightarrow 1^$ $f(x) = \lim$ $x\rightarrow 1^ 2 = 2.$ f has a removable discontinuity at $x = 1$. $f(2) = 3$, \lim $x \rightarrow 2^$ $f(x) = \lim$ $x\rightarrow 2^ (x+1) = 3$, $\lim_{ }$ $x \rightarrow 2^+$ $f(x) = \lim$ $x \rightarrow 2^+$ $\frac{x^3-1}{(x-1)(x-2)} = \infty.$ f has an *infinite discontinuity* at $x = 2$.
- 3. Let $f(x) = 2x \sin x + x + 1$. f is continuous on $[-\pi, 0]$, and $f(-\pi) = -\pi + 1 < 0$ & $f(0) = 1 > 0$. From The Intermediate Value Theorem, there is at least one $c \in (-\pi, 0)$ such that $f(c) = 0$. Thus, c is a real solution for the equation.

4.
$$
f'(x) = \frac{2}{3\sqrt[3]{x}} - \frac{5}{3}x^{\frac{2}{3}} = \frac{2-5x}{3\sqrt[3]{x}}
$$

(a) f is continuous at $x = 0$, lim $x \rightarrow 0^{\pm}$ $f'(x) = \pm \infty$. The graph of f has a vertical tangent at $x = 0$.

(b)
$$
f'(\frac{2}{5}) = 0
$$
. Thus, f has a horizontal tangent at $x = \frac{2}{5}$.

5. L.H.D. at
$$
(x = -1) = \lim_{x \to -1^{-}} \frac{f(x) - f(-1)}{x - (-1)} = \lim_{x \to -1^{-}} \frac{(-2x - 1) - 1}{x + 1} = -2
$$

R.H.D. at $(x = -1) = \lim_{x \to -1^{+}} \frac{f(x) - f(-1)}{x - (-1)} = \lim_{x \to -1^{+}} \frac{x^2 - 1}{x + 1} = -2$
 $f'(-1) = \lim_{x \to -1} \frac{f(x) - f(-1)}{x - (-1)} = -2 \in \mathbb{R}$. Therefore, f is differentiable at $x = -1$.

6.
$$
f'(x) = 2\sin(\sqrt{x} + 1)\cos(\sqrt{x} + 1)\frac{1}{2\sqrt{x}}
$$
.

7. (a)
$$
\lim_{x \to \infty} (\sqrt{x^2 + x} - x) = \lim_{x \to \infty} (\sqrt{x^2 + x} - x) \times \frac{\sqrt{x^2 + x} + x}{\sqrt{x^2 + x} + x} = \lim_{x \to \infty} \frac{(x^2 + x) - x^2}{\sqrt{x^2 (1 + \frac{1}{x})} + x}
$$

\n $= \lim_{x \to \infty} \frac{x}{|x| \sqrt{1 + \frac{1}{x}} + x} = \lim_{x \to \infty} \frac{x}{x \sqrt{1 + \frac{1}{x}} + 1} = \frac{1}{2}$
\n(b) For $x \neq 0, -1 \leq \sin \frac{1}{x} \leq 1 \implies 1 \leq 2 + \sin(\frac{1}{x}) \leq 3 \implies \frac{1}{3} \leq \frac{1}{2 + \sin(\frac{1}{x})} \leq 1$
\n(I) If $x > 0, \frac{x}{x} < -\frac{x}{x} < x$. Since $\lim_{x \to \infty} \frac{x}{x} = 0 = \lim_{x \to \infty} x$, then from the Scav

\n- (I) If
$$
x > 0
$$
, $\frac{x}{3} \leq \frac{x}{2 + \sin\left(\frac{1}{x}\right)} \leq x$. Since $\lim_{x \to 0^+} \frac{x}{3} = 0 = \lim_{x \to 0^+} x$, then from the Squeeze Theorem $\lim_{x \to 0^+} \frac{x}{2 + \sin\left(\frac{1}{x}\right)} = 0$.
\n- (II) If $x < 0$, $\frac{x}{3} \geq \frac{x}{2 + \sin\left(\frac{1}{x}\right)} \geq x$. Since $\lim_{x \to 0^-} \frac{x}{3} = 0 = \lim_{x \to 0^-} x$, then from the Squeeze Theorem $\lim_{x \to 0^-} \frac{x}{2 + \sin\left(\frac{1}{x}\right)} = 0$. Therefore, $\lim_{x \to 0} \frac{x}{2 + \sin\left(\frac{1}{x}\right)} = 0$.
\n